Direct regulation of LAMP1 by tumor-suppressive microRNA-320a in prostate cancer
نویسندگان
چکیده
Advanced prostate cancer (PCa) metastasizes to bone and lymph nodes, and currently available treatments cannot prevent the progression and metastasis of the disease. Therefore, an improved understanding of the molecular mechanisms of the progression and metastasis of advanced PCa using current genomic approaches is needed. Our miRNA expression signature in castration-resistant prostate cancer (CRPC) revealed that microRNA-320a (miR‑320a) was significantly reduced in cancer tissues, suggesting that miR‑320a may be a promising anticancer miRNA. The aim of this study was to investigate the functional roles of miR‑320a in naïve PCa and CRPC cells and to identify miR‑320a-regulated genes involved in PCa metastasis. The expression levels of miR‑320a were significantly reduced in naïve PCa, CRPC specimens, and PCa cell lines. Restoration of mature miR‑320a in PCa cell lines showed that miR‑320a significantly inhibited cancer cell migration and invasion. Moreover, we found that lysosomal-associated membrane protein 1 (LAMP1) was a direct target of miR‑320a in PCa cells. Silencing of LAMP1 using siRNA significantly inhibited cell proliferation, migration, and invasion in PCa cells. Overexpression of LAMP1 was observed in PCa and CRPC clinical specimens. Moreover, downstream pathways were identified using si-LAMP1-transfected cells. The discovery of tumor-suppressive miR‑320a-mediated pathways may provide important insights into the potential mechanisms of PCa metastasis.
منابع مشابه
MicroRNA-320a downregulation mediates human liver cancer cell proliferation through the Wnt/β-catenin signaling pathway
MicroRNAs (miRs) have emerged as key epigenetic regulators involved in cancer progression. miR-320a has been demonstrated to be a novel tumor suppressive microRNA in several types of cancers. In the present study, the role of miR-320a in human hepatocellular carcinoma (HCC) was investigated. The expression levels of miR-320a and messenger RNA were determined by reverse transcription-quantitativ...
متن کاملp100 functions as a metastasis activator and is targeted by tumor suppressing microRNA‐320a in lung cancer
BACKGROUND Lung cancer is among the most frequently diagnosed types of cancer worldwide, with high morbidity and mortality. Metastasis accounts for the deadliest and most poorly understood feature of lung cancer. Herein, we demonstrate that SND1 (also known as p100) acts as a candidate metastasis activator and is targeted by microRNA-320a (miR-320a) in lung cancer cells. METHODS p100 expressi...
متن کاملTumor-suppressive microRNA-218 inhibits cancer cell migration and invasion via targeting of LASP1 in prostate cancer
Our recent studies of the microRNA (miRNA) expression signature in prostate cancer (PCa) indicated that miRNA-218 (miR-218) was significantly downregulated in clinical specimens, suggesting that miR-218 might act as a tumor-suppressive miRNA in PCa. The aim of the present study was to investigate the functional significance of miR-218 in PCa and to identify novel miR-218-regulated cancer pathwa...
متن کاملMicroRNA-26a/b directly regulate La-related protein 1 and inhibit cancer cell invasion in prostate cancer.
Our past studies of microRNA (miRNA) expression signatures of cancers including prostate cancer (PCa) revealed that microRNA-26a and microRNA-26b (miR-26a and miR-26b) were significantly downregulated in cancer tissues. In the present study, we found that restoration of miR-26a or miR-26b significantly inhibited PCa cell invasion. Gene expression data and in silico analysis showed that the gene...
متن کاملTumor‐suppressive microRNA‐223 inhibits cancer cell migration and invasion by targeting ITGA3/ITGB1 signaling in prostate cancer
Analysis of microRNA (miRNA) expression signatures in prostate cancer (PCa) and castration-resistant PCa has revealed that miRNA-223 is significantly downregulated in cancer tissues, suggesting that miR-223 acts as a tumor-suppressive miRNA by targeting oncogenes. The aim of this study was to investigate the functional roles of miR-223 and identify downstream oncogenic targets regulated by miR-...
متن کامل